Abstract

BackgroundCaffeine is one of the most abundant methylxanthines in tea, and it remains stable in processing of general teas. In the secondary metabolism of microorganism, theophylline is the main conversion product in caffeine catabolism through demethylation. Microorganisms, involved in the solid-state fermentation of pu-erh tea, have a certain impact on caffeine level. Inoculating an appropriate starter strain that is able to convert caffeine to theophylline would be an alternative way to obtain theophylline in tea. The purpose of this study was to isolate and identify the effective strain converting caffeine to theophylline in pu-erh tea, and discuss the optimal conditions for theophylline production.ResultsCaffeine content was decreased significantly (p < 0.05) and theophylline content was increased significantly (p < 0.05) during the aerobic fermentation of pu-erh tea. Five dominant fungi were isolated from the aerobic fermentation and identified as Aspergillus niger, Aspergillus sydowii, Aspergillus pallidofulvus, Aspergillus sesamicola and Penicillium mangini, respectively. Especially, A. pallidofulvus, A. sesamicola and P. mangini were detected in pu-erh tea for the first time. All isolates except A. sydowii TET-2, enhanced caffeine content and had no significant influence on theophylline content. In the aerobic fermentation of A. sydowii TET-2, 28.8 mg/g of caffeine was degraded, 93.18% of degraded caffeine was converted to theophylline, and 24.60 mg/g of theophylline was produced. A. sydowii PET-2 could convert caffeine to theophylline significantly, and had application potential in the production of theophylline. The optimum conditions of theophylline production in the aerobic fermentation were 1) initial moisture content of 35% (w/w), 2) inoculation quantity of 8%, and 3) incubation temperature at 35 °C.ConclusionsFor the first time, we find that A. sydowii PET-2 could convert caffeine to theophylline, and has the potential value in theophylline production through aerobic fermentation.

Highlights

  • Caffeine is one of the most abundant methylxanthines in tea, and it remains stable in processing of general teas

  • For the first time, we find that A. sydowii Pu-erh tea (PET)-2 could convert caffeine to theophylline, and has the potential value in theophylline production through aerobic fermentation

  • Based on the changes of caffeine and theophylline contents, we predicted that the fungi in the aerobic fermentation lead to the conversion of caffeine to theophylline

Read more

Summary

Introduction

Caffeine is one of the most abundant methylxanthines in tea, and it remains stable in processing of general teas. Microorganisms, involved in the solid-state fermentation of pu-erh tea, have a certain impact on caffeine level. Some reports found that several microorganisms such as Candida albicans, Candida famata (Debaryomyces hansenii), Aspergillus niger and Aspergillus sydowii have potential capability to reduce caffeine content through an inoculated fermentation [18,19,20]. This suggests that the effective strain with the capability of converting caffeine to theophylline could be found in pu-erh tea

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.