Abstract

Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.

Highlights

  • Carotenoids are natural pigments with yellow-to-red coloring properties, found ubiquitously in plants, algae, fungi, and bacteria

  • Plasmid-independent lycopene overproduction deletion mutant of C. glutamicumengineered was performed in order to improve the expression of prenyltransferase phytoene operon synthasecrtEBI

  • Corynebacterium glutamicum was engineered for the production of the marine carotenoid astaxanthin

Read more

Summary

Introduction

Carotenoids are natural pigments with yellow-to-red coloring properties, found ubiquitously in plants, algae, fungi, and bacteria. These pigments form a subfamily of the large and diverse group of terpenoids with more than 55,000 different structures. Terpenoids are natural secondary metabolites composed of isoprene units, which typically exhibit flavoring, fragrance and coloring properties. Carotenoids and their derivatives have become more and more important for the health care industry due to their beneficial effects on human and animal health and their possible pharmaceutical, medical, and nutraceutical applications. Astaxanthin is a marine, red, cyclic C40 carotenoid and the third most important carotenoid on the global market after β-carotene and lutein, with a predicted sales volume of 670 metric tons valued at 1.1 billion US$

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.