Abstract

BackgroundSeveral plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast.ResultsSince the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11β-hydroxy-manoyl oxide in yeast. To improve 11β-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11β-hydroxy-manoyl oxide titers, reaching 21.2 mg L−1.ConclusionsIn this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11β and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0440-8) contains supplementary material, which is available to authorized users.

Highlights

  • Several plant diterpenes have important biological properties

  • Their biosynthesis requires the cyclization of geranylgeranyl diphosphate (GGPP), by a class II diterpene synthase, to a labdane-type diphosphate (e.g. (+)-copalyl diphosphate ((+)-CPP) or 8-hydroxy-CPP (8OH-CPP)), which is subsequently taken up by a class I diTPS to generate the basic diterpene skeleton (Fig. 1)

  • Miltiradiene is a common precursor in the biosynthesis of tanshinones and carnosic acidrelated diterpenes and several miltiradiene synthases have been reported in different organisms, including S. miltiorrhiza, S. pomifera, S. fruticosa and Rosmarinus officinalis [27,28,29,30]

Read more

Summary

Introduction

Forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. The superfamily of labdanerelated diterpenes comprises more than 7000 members and is characterized by a basic decalin core [4] Their biosynthesis requires the cyclization of geranylgeranyl diphosphate (GGPP), by a class II diterpene synthase (diTPS), to a labdane-type diphosphate Several labdane-type diterpenes, such as tanshinones, carnosic acid, and forskolin, display potent biological activities. One of the early events in this process likely involve oxidation of manoyl oxide at position C-11, since 11-oxomanoyl oxide (5) (Fig. 2) was isolated from C. forskohlii roots [23, 24], but a catalytic activity responsible for this reaction has not yet been identified

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.