Abstract

It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7–10% the amount of violacein compared to the wild type strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wild type. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s) may be play a role in the antibacterial activity of P. luteoviolacea.

Highlights

  • The production of bioactive secondary metabolites is an essential defense mechanism and/or competitive strategy for many bacterial species

  • To the best of our knowledge, this is the only reported bacterial species that produce both violacein and indolmycin, leading us to investigate whether the synthesis of the two L-tryptophan supernatants from the wild type strain S4054 (Table 2)

  • It is possible that the beige phenotype originating from the decreased violacein production in the mutant made it possible to detect stress induction of violacein genes by their pigmentation, while this induction would normally be hidden by the un-induced violacein production

Read more

Summary

Introduction

The production of bioactive secondary metabolites is an essential defense mechanism and/or competitive strategy for many bacterial species. Violacein-producing species of the Pseudoalteromonas genus have been isolated from marine sponges (Yang et al, 2007), from biofilms on bivalve shells (Gillan et al, 1998), and from other biotic surfaces such as the alga Ulva australis (Rao et al, 2007). These niches are typically high in bacterial density, it is not known if or how effective violacein is in mediating bacteria–bacteria-interactions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.