Abstract

The bengamides, sponge-derived natural products that have been characterized as inhibitors of methionine aminopeptidases (MetAPs), have been intensively investigated as anticancer compounds. We embarked on a multidisciplinary project to supply bengamides by fermentation of the terrestrial myxobacterium M. virescens, decipher their biosynthesis, and optimize their properties as drug leads. The characterization of the biosynthetic pathway revealed that bacterial resistance to bengamides is conferred by Leu 154 of the myxobacterial MetAP protein, and enabled transfer of the entire gene cluster into the more suitable production host M. xanthus DK1622. A combination of semisynthesis of microbially derived bengamides and total synthesis resulted in an optimized derivative that combined high cellular potency in the nanomolar range with high metabolic stability, which translated to an improved half-life in mice and antitumor efficacy in a melanoma mouse model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.