Abstract

Yeasts can convert amino acids to flavor alcohols following the Ehrlich pathway, a reaction sequence comprising transamination, decarboxylation, and reduction. The alcohols can be further derivatized to the acetate esters by alcohol acetyl transferase. Using L: -methionine as sole nitrogen source and at high concentration, 3-(methylthio)-1-propanol (methionol) and 3-(methylthio)-propylacetate (3-MTPA) were produced with Saccharomyces cerevisiae. Methionol and 3-MTPA acted growth inhibiting at concentrations of >5 and >2 g L(-1), respectively. With the wild type strain S. cerevisiae CEN.PK113-7D, 3.5 g L(-1) methionol and trace amounts of 3-MTPA were achieved in a bioreactor. Overexpression of the alcohol acetyl transferase gene ATF1 under the control of a TDH3 (glyceraldehyde-3-phosphate dehydrogenase) promoter together with an optimization of the glucose feeding regime led to product concentrations of 2.2 g L(-1) 3-MTPA plus 2.5 g L(-1) methionol. These are the highest concentrations reported up to now for the biocatalytic synthesis of these flavor compounds which are applied in the production of savory aroma compositions such as meat, potato, and cheese flavorings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.