Abstract

AbstractInjection of sulfate aerosols into the stratosphere, a form of solar geoengineering, has been proposed as a means to reduce some climatic changes by decreasing net anthropogenic radiative forcing. The cost and technical feasibility of forming aerosols with the appropriate size distribution are uncertain. We examine the possibility of producing the relevant sulfur species, SO2 or SO3, by in situ conversion from elemental sulfur onboard an aircraft. We provide a first‐order engineering analysis of an open cycle chemical plant for in situ sulfur to sulfate conversion using a Brayton cycle combustor and a catalytic converter. We find that such a plant could have sufficiently low mass that the overall requirement for mass transport to the lower stratosphere may be reduced by roughly a factor of 2. All else equal, this suggests that—for a given radiative forcing—the cost of delivering sulfate aerosols may be nearly halved. Beyond reducing cost, the use of elemental sulfur reduces operational health and safety risks and should therefore reduce environmental side effects associated with delivery. Reduction in cost is not necessarily beneficial as it reduces practical barriers to deployment, increasing the urgency of questions concerning the efficacy, risks, and governance of solar geoengineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.