Abstract

The accumulation of energy from non-programmable renewable sources is a crucial aspect for the energy transition. Using surplus electricity from renewable energy sources, power-to-gas plants allow to produce a substitute natural gas (SNG) that can be injected in the existing infrastructure for large-scale and long-term energy storage, contributing to gas grid decarbonisation. The plant layout, the method used for carbon dioxide capture and the possible cogeneration of electricity can increase the efficiency and convenience of SNG synthesis plants. In this work, a system for the simultaneous production of SNG and electricity starting from biomass and fluctuating electricity from renewables is proposed, using a plant based on the Allam thermodynamic cycle as the power unit. The Allam power cycle uses supercritical CO2 as evolving fluid and is based on the oxycombustion of gaseous fuels, thus greatly simplifying CO2 capture. In the proposed system, oxycombustion is performed using biomass syngas and electrolytic oxygen. The CO2 generated by means of oxycombustion is captured, and it is subsequently used together with renewable hydrogen for the production of SNG through thermochemical methanation. The system is also coupled with a solid oxide electrolyser and a biomass gasifier. The whole plant was analysed from an energy-related point of view. The results show overall plant efficiency of 67.6% on an LHV basis (71.6% on an HHV basis) and the simultaneous production of significant amounts of electricity and of high-calorific-value SNG, whose composition could be compatible with the existing natural gas network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call