Abstract

Sorbitol production from glucose was studied through catalytic transfer hydrogenation (CTH) over Raney nickel catalysts in alcohol media, used as solvents and hydrogen donors. It was found that alcohol sugars, sorbitol and mannitol, can be derived from two hydrogen transfer pathways, one produced involving the sacrificing alcohol as a hydrogen donor, and a second one involving glucose disproportionation. Comparison between short-chain alcohols evidenced that ethanol was able to reduce glucose in the presence of Raney nickel under neutral conditions. Side reactions include fructose and mannose production via glucose isomerization, which occur even in the absence of the catalyst. Blank reaction tests allowed evaluating the extension of the isomerization pathway. The influence of several operation parameters, like the temperature or the catalyst loading, as well as the use of metal promoters (Mo and Fe-Cr) over Raney nickel, was examined. This strategy opens new possibilities for the sustainable production of sugar alcohols.

Highlights

  • Lignocellulose biomass is considered a promising alternative source to fossil fuels for the sustainable production of useful chemicals and value-added products [1,2]

  • Lignocellulosic biomass is the major component of agricultural waste and forest residue, which are inexpensive and abundant raw materials, as well as a primary source of monosaccharides, including glucose and fructose [4], which can be converted into a variety of different chemicals, including sugar polyols

  • We demonstrated that the use of the already industrially implemented Raney nickel catalysts is a good option to be used in a different operational procedure to that conventionally used for the ring-opening hydrogenation from glucose to sorbitol [31]

Read more

Summary

Introduction

Lignocellulose biomass is considered a promising alternative source to fossil fuels for the sustainable production of useful chemicals and value-added products [1,2]. Sorbitol is a sugar polyol extensively used in nutrition, cosmetics, and medical or industrial applications It is employed as a low-calorie sweetener, as a humectant in cosmetics and pharmaceutical products, and as an intermediate platform for the production of value-added molecules (e.g., 1,4-sorbitan, isosorbide, glycols, l-ascorbic acid, etc.) [5,6,7]. This versatility led to its inclusion in the top derived value-added chemicals to be converted into high-value bio-based products from biomass [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.