Abstract

Atomic nanoclusters exhibit large surface to volume ratio which enhances their ability to interact with external materials, thus, they can be utilized efficiently for catalysts and gas sensing applications. Copper (Cu) nanoclusters are a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H2S [1,2]. In this work, Cu nanoclusters were synthesized using the dc magnetron sputtering and gas-condensation technique [3,4]. The dependence of nanoclusters' size on various source parameters such as the inert gas flow rate, and aggregation length has been investigated in detail. The results show that as the inert gas flow rate increases, the nanocluster size decreases. These results could be understood as a result of nanocluster production by three-body collision mechanism. This work demonstrates the ability of tuning the nanoclusters' size and yield by a proper optimization of the source operation conditions. Keywords: Cu nanoclusters, sputtering, nanocluster size selection, inert gas condensation, nanocluster formation mechanism

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.