Abstract

In this article, ginsenosides and polysaccharide contents in suspension cells and native roots of Panax quinquefolium L. were studied. In order to enhance the contents of ginsenosides and polysaccharide in P. quinquefolium suspension cells, we tested the effects of lactoalbumin hydrolysate on the growth of P. quinquefolium suspension cell, synthesis of ginsenosides and polysaccharide in flask and bioreactor. In flask culture, cells growth ratio was significantly enhanced by the addition of lower concentration of lactoalbumin hydrolysate. Addition of 100 mg L−1 lactoalbumin hydrolysate significantly enhanced the contents of total saponins (5.44 mg g−1 DW) and the contents were 3.89-fold over the control group. Addition of lactoalbumin hydrolysate significantly promoted the accumulation of polysaccharide, except 200 mg L−1 lactoalbumin hydrolysate. The highest total saponins yield (36.72 mg L−1 DW) and polysaccharide yield (0.83 g L−1 DW) were obtained at 100 mg L−1 lactoalbumin hydrolysate. In a 5-L stirred tank bioreactor, the highest contents of total saponins and TRb group ginsenosides were achieved on day 26, while the effect of lactoalbumin hydrolysate on the contents of TRg group ginsenosides were insignificant. This result suggests that lactoalbumin hydrolysate might have triggered the enzyme activities for the synthesis of TRb group ginsenosides. Overall, the highest total saponins yield (31.37 mg L−1 DW) and polysaccharide yield (1.618 g L−1 DW) were obtained on day 26 and day 24 respectively and the polysaccharide yield was 1.95-fold higher than the shake flask culture (0.83 g L−1 DW). These results provided theoretical reference for two-stage culture in suspension cells of P. quinquefolium in bioreactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call