Abstract

Maize plants were grown for 42 days in a sandy soil at two different mineral nutrient levels, in an atmosphere containing 14CO2. The 14C and total carbon contents of shoots, roots, soil and soil microbial biomass were measured 28, 35 and 42 days after germination. Relative growth rates of shoots and roots decreased after 35 days at the lower nutrient level, but were relatively constant at the higher nutrient level. In the former treatment, 2% of the total 14C fixed was retained as a residue in soil at all harvests while at the higher nutrient level up to 4% was retained after 42 days. Incorporation of 14C into the soil microbial biomass was close to its maximum after 35 days at the lower nutrient level, but continued to increase at the higher level. Generally a good agreement existed between microbial biomass, 14C contents and numbers of fluorescent pseudomonads in the rhizosphere. Numbers of fluorescent pseudomonads in the rhizosphere were maximal after 35 days at the lower nutrient level and continued to increase at the higher nutrient level. The proportions of the residual 14C in soil, incorporated in the soil microbial biomass, were 28% to 41% at the lower nutrient level and 20%6 – 30% at the higher nutrient level. From the lower nutrient soil 18%6 – 52%6 of the residual soil 14C could be extracted with 0.5 N K2SO4, versus 14%6 – 16% from the higher nutrient soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call