Abstract
The artificially synthesized polyinosinic-polycytidylic acid (poly IC) has been widely used to induce type I IFN responses in various vertebrates including fish. However, as poly IC is too expensive to use in aquaculture, the development of another economical long dsRNA producing method is needed to practically use long dsRNAs in aquaculture farms for the control of infectious diseases. In the present study, to produce long dsRNAs economically, we developed a novel long dsRNA production system based on the RNase III gene deleted auxotrophic mutant E. tarda (ΔalrΔrncΔasd E. tarda) and a long dsRNA-producing vector that was equipped with two modified λ phage PR promoters arranged in a head-to-head fashion. As the present genetically engineered E. tarda cannot live without supplementation of d-alanine and DAP, environmental and medicinal risks are minimized. Olive flounder (Paralichthys olivaceus) fingerlings administered the long dsRNA-producing auxotrophic E. tarda mutant (Δalr ΔrncΔasd E. tarda) showed significantly higher expressions of TLR22, Mx1, and ISG15 genes, indicating a potential to increase type I interferon responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.