Abstract

A method for the production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale is described employing the temperature induced runaway replication vector pIET98 and the Escherichia coli host strain BL21. Fed-batch cultivation using a semi-synthetic high-cell densitiy medium was adjusted in 5-L scale to yield a constant growth rate of 0,17 h(-1) and a final cell concentration of 27 g dry weight/L by exponentially increasing the nutrient supply. Runaway replication and thus, LeuDH expression was induced during the feeding phase by increasing the cultivation temperature to 41 degrees C yielding a specific enzyme activity of 110 U/mg, which corresponds to 30% of the soluble cell protein. The cultivation was terminated when the dissolved oxygen content fell below 10% saturation. The final volume activity was 600,000 U/L cultivation. No change in growth, cell density, or expression activity was observed scaling up the cultivation volume to 200 L. Thus, 120,000,000 units L-leucine dehydrogenase were obtained from one cultivation. The purification of L-leucine dehydrogenase to homogeneity was carried out by heat denaturation, liquid-liquid extraction, gel filtration, and anion-exchange chromatography to give pure enzyme in 65% yield. The integrity of the recombinant enzyme was tested measuring the molecular weight and determining the N-terminal amino acid sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.