Abstract
Chemical-enzymatic synthesis of human Epidermal Growth Factor (hEGF) cDNA has been performed, following by cloning into expression vector pTWIN1 (New England Biolabs). The resulting recombinant fusion protein expressed in Escherichia coli consisted of the N-terminal chitin-binding domain, mini-intein Ssp dnaB domain and hEGF polypeptide at the C-terminus. In this construct, mini-intein Ssp dnaB played a role of catalytically active subunit capable under certain conditions of autocatalytic cleavage resulting in separation of the target protein. As the hybrid protein had several cysteins in its sequence—one in chitin-binding domain, one in mini-intein and six in hEGF, it was necessary to work out optimal scheme for refolding and purification of the recombinant hEGF. As a result of this work, two schemes of the recombinant hEGF purification have been developed: according to the first scheme, the recombinant protein with reduced cysteins is bound to the chitin column, the hEGF is cleaved off and eluted, and then refolded to form appropriate cystein bridges. In the second scheme, the entire hybrid protein is first refolded to form disulfide bonds and then loaded to affinity resin; the recombinant hEGF is cleaved off and eluted in its native state. In spite of the fact that the first scheme is more common and suitable for a variety of recombinant proteins, in case of recombinant hEGF, the second scheme proved to be more productive and cost-effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.