Abstract

Chinese hamster ovary (CHO) cells producing the recombinant glycoprotein human antithrombin III (rhAT III) were batch cultivated in a 20-L bioreactor for 13 days. Neuraminidase activity in cell-free supernatant was monitored during cultivation and free sialic acid was determined by HPLC. Neu5Acalpha(2-->3)Gal-specific Maackia amurensis and Galbeta(1-->4)GlcNAc-specific Datura stramonium agglutinin were used for determination of sialylated and desialylated rhAT III, respectively. A commercial test kit was used for evaluation of functional rhAT III activity. Supernatant neuraminidase as well as lactate dehydrogenase activity increased significantly during batch growth. The enhanced number of dead cells correlated with increased neuraminidase activity, which seemed to be principally due to cell lysis, resulting in release of cytosolic neuraminidase. Loss of terminally alpha(2-->3) linked sialic acids of the oligosaccharide portions of rhAT III, analyzed in lectin-based Western blot and lectin-adsorbent assays, correlated with a decrease of activity of rhAT III produced throughout long-term batch cultivation. Thus, structural oligosaccharide integrity as well as the functional activity of recombinant glycoprotein depend on the viability and mortality of the bioreactor culture, and batches with a high number of viable cells are required to guarantee production of glycoproteins with maximum biological activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 441-448, 1997.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.