Abstract

Hydroxyl radicals (•OH) production upon the oxygenation of reduced iron minerals at the oxic/anoxic interface has been well recognized. However, little is known in the influencing environmental factors and the involved mechanisms. In this study, much more •OH could be efficiently produced from oxygenation of Fe(II) with 20–200 mM carbonate. Both carbonate concentration and anoxic reaction time play a critical role in •OH production. High carbonate facilitates the formation of Fe(II)high reactivity, i.e., surface-adsorbed and structural Fe(II) with low crystalline that is reactive toward O2 reaction for •OH production, while long anoxic reaction time enables the transfer from Fe(II)high reactivity to Fe(II)low reactivity, i.e., Fe(II) at interior sites with high crystalline, that is hardly oxidized by O2. Furthermore, the degradation pathway of p-nitrophenol (PNP) is highly dependent on the carbonate concentration that low carbonate facilitates •OH oxidation of PNP (80.2%) while high carbonate enhanced O2•− reduction of PNP (48.7%). Besides, carbonate also influences the structural evolution of Fe mineral during oxygenation by retarding its hydrolysis and following transformation. Our finding sheds new light on understanding the important role of oxyanions such as carbonate in iron redox cycles and directing contaminant attenuation in subsurface environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call