Abstract

Polylactic acid (PLA) is one of the most promising polymers for use as the matrix of a bone scaffold. In this work, porous PLA monoliths are fabricated via nonsolvent induced phase separation using dichloromethane as a solvent and hexane as a nonsolvent. The PLA-dichloromethane-hexane compositions which undergo liquid–liquid phase separation followed by gelation are shown to allow for the production of high quality foams. Solvent exchange with methanol after aging the gel is found to substantially reduce shrinkage during drying. Using this simple, versatile and template-free method we produced PLA foams with porosities as high as ∼90.8%, specific surface area up to 54.14 m2/g, crystallinity up to 62.6% and compressive modulus ranging from 1.8 to 57 MPa. Depending on ternary mixture concentration and standing temperature a range of mesoporous and combined meso/macroporous morphologies suitable for use as a bone scaffold are produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.