Abstract

Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), which is a member of the ubiquitin carboxyl-terminal hydrolase (UCH) family, is highly expressed in neurons. In vitro, UCH- L1 exhibits both ubiquitin hydrolase and ligase activity. Many studies have suggested that UCH-L1 is involved in the pathogenesis of Parkinson's disease and some different human cancer diseases, but its role in a living system is still unclear. Recently, Drosophila melanogaster has been shown to be a compatible model for studying human diseases. To investigate the role of UCH-L1 in a living system, the UCH-L1 homologous protein in Drosophila melanogaster (dUCH) is used for analyzing the role of the protein's function in transgenic Drosophila. Here, we used DNA molecular techniques to clone, express, and purify dUCH protein from Escherichia coli. The purified dUCH protein was injected into a rabbit to produce an anti-dUCH antibody, which was shown to have high specificity and sensitivity to the dUCH protein. The affinity of the antibody is 1:320,000 at 7.81 ng/μL antigen concentration. The 1:40,000 dilution-produced antibodies can detect antigen at a low concentration of 0.98 ng/μL. Success in producing this antibody provides good material for further experiments in the study of the role of UCH-L1 by a Drosophila model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call