Abstract

Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that could effectively replace fossil-based and non-biodegradable plastics. However, their production is currently limited by the high production costs, mainly due to the costly carbon sources used, low productivity and quality of the materials produced. A potential solution lies in utilizing cheap and renewable carbon sources as the primary feedstock during the biological production of PHAs, paving the way for a completely sustainable and economically viable process. In this review, the opportunities and challenges related to the production of polyhydroxyalkanoates using methane and volatile fatty acids (VFAs) as substrates were explored, with a focus on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The discussion reports the current knowledge about promising Type II methanotrophs, the impact of process parameters such as limiting nutrients, CH4:O2 ratio and temperature, the type of co-substrate and its concentration. Additionally, the strategies developed until now to enhance PHA production yields were also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call