Abstract

Pokeweed antiviral protein (PAP), one of ribosome inactivating proteins (RIPs), has very strong toxicity both to prokaryotic and eukaryotic cells. To produce mutant PAPs nontoxic to cells, the PAP-cDNA was inserted into a yeast-E.coli shuttle vector under the control of galactose promoter, mutagenized using hydroxylamine, and transformed into yeast cells. Transformed yeast cells were selected on the uracil-deficient plate containing glucose or raffinose, and the yeast cells producing mutant PAPs nontoxic to cells were then selected on the galactose plate. Eighteen mutants were obtained by immunoblot analyses of 1,000 transformants: among them, three, ten and five mutants produced unprocessed, mature and truncated PAPs, respectively. Fourteen PAP mutants among them did not inhibit the yeast cell growth, and showed no or less inhibition of protein synthesisin vitro. Six among fourteen mutants were able to protect TMV infection in coinoculation experiment. The mutant PAPs showing an antiviral activity either without or reduced RIP activity contain neither the active site mutation nor C-terminal deletion mutation. These results suggest that both the RIP activity and the antiviral activity will require other amino acid residue(s) besides the active site and that the antiviral acitivity of PAP can be dissociated from its toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.