Abstract

Didymosphenia geminata is a benthic bloom-forming diatom that is invasive in many temperate, oligotrophic freshwater ecosystems. D. geminata blooms are unusual, resulting from prolific basal stalk production stimulated by phosphorus limitation. The adaptive value of stalk production and bloom development is disputed. We examined blooms in relation to stalk biomass, biovolume and phosphatase activity. An austral summer survey of 15 sites within the Waitaki River of New Zealand compared reference communities (no detectable D. geminata), with those impacted by high and low D. geminata biomass. Sites were compared for differences in phosphatase location and activity using chromogenic substrates, community composition using morphological identifications, and overlying water and pore-water chemistry. Experimental microcosms subjected live proliferations to varied phosphate concentrations, and phosphatase rates and location were examined. Survey results identified phosphatase activity increased with D. geminata biomass, with lowest rates in reference communities. Pools of labile nutrients were detected in D. geminata mats, and in vitro hydrolysis rates were rapid in replete phosphoester conditions (~0.2 mmol l−1 h−1 cm−2 at 16°C), with activity concentrated on stalks. Our results suggest D. geminata bloom development is an adaptation to maximise supply of phosphate under chronic phosphorus limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.