Abstract

In recent decades, many practical applications were developed with regard to the Taylor–Couette device, for example, reaction, filtration, extraction and bioreactor. In this study, the Taylor–Couette bioreactor was used to culture cells seeded in a biodegradable porous scaffold and produce PEX protein. Two different cell lines (NIH/3T3 and QM7) were seeded into PLGA sponges, which were fabricated using a solvent-free supercritical gas foaming method, and then cultured in the Taylor–Couette bioreactor. Cell proliferation was characterized using Quant-iT™ PicoGreen® dsDNA assay and the results indicated that high mass transfer rate in the Taylor–Couette bioreactor enhanced cell proliferation. Qualitative distribution of live/dead cells was characterized using LIVE/DEAD® Viability/Cytotoxicity assay and SEM and the results showed that cells cultured in static control mainly proliferated on the outer surface while the cells of Taylor-vortex bioreactor group could penetrate into the scaffold. The production yield of PEX protein, from QM7 cells transfected with pM9PEX, was quantified using PEX ELISA and the results showed a much higher PEX mass per scaffold for bioreactor than the control. As such, there is potential for the use of Taylor–Couette bioreactor in the mass production of PEX protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.