Abstract

Oxymethylene dimethyl ethers (OMEn) are potential compression ignition fuels or blend components that enable drastic reductions in pollutant formation. By combining multiple conversion steps, OMEn can be produced from carbon dioxide (CO2) and hydrogen (H2) and hence from renewable electricity. However, established processes for OMEn production are challenging to model and detailed analyses of OMEn production from H2 and CO2 are not yet available in the open literature. In the first part of our two-part article, state-of-the-art models for the formaldehyde-containing mixtures involved in OMEn production are implemented in AspenPlus and used to analyze a process chain for production of OME1 from H2 and CO2 via methanol and aqueous formaldehyde solution. The exergy efficiency of the process chain is 73%. Tailored processes aiming at improved heat and mass integration as well as novel synthesis routes leading to reduced process complexity or avoiding oxidative intermediate steps hold significant promise for future efficiency improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.