Abstract

Polymer monolithic columns with controlled surface ligand density, providing stationary phase gradients within monolithic capillary columns, have been developed using photo-grafting through optical filters. Utilising commercially available cyclic olefin co-polymer (COC) films, the production of an optical filter capable of attenuating UV irradiation, in a tailored manner, was investigated. This novel optical filter was successfully applied to the surface modification of poly(BuMA-co-EDMA) monolithic columns in a multi-step grafting procedure. Fabricated columns were subjected to scanning capacitively coupled contactless conductivity (sC(4)D), to determine the distribution of the grafted functional groups, axially along the column. Further modification to produce a chelating stationary phase gradient of iminodiacetic acid (IDA) was demonstrated. To demonstrate the distribution of the IDA sites, a metal cation (Cu(2+)) was complexed to the IDA forming a chelate. Upon the formation of a complex of IDA with Cu(2+), an overall drop in conductive response was observed. The COC optical filter was also used in the fabrication of a grafted gradient of strong cation exchanger (SCX), sulphopropyl methacrylate (SPM) upon a polymer monolith, demonstrating the broader applicability of such a filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.