Abstract

Insect cells have long been the main expression host of many virus-like particles (VLP). VLPs resemble the respective viruses but are non-infectious. They are important in vaccine development and serve as safe model systems in virus research. Commonly, baculovirus expression vector system (BEVS) is used for VLP production. Here, we present an alternative, plasmid-based system for VLP expression, which offers distinct advantages: in contrast to BEVS, it avoids contamination by baculoviral particles and proteins, can maintain cell viability over the whole process, production of alphanodaviral particles will not be induced, and optimization of expression vectors and their ratios is simple. We compared the production of noro-, rota- and entero-VLP in the plasmid-based system to the standard process in BEVS. For noro- and entero-VLPs, similar yields could be achieved, whereas production of rota-VLP requires some further optimization. Nevertheless, in all cases, particles were formed, the expression process was simplified compared to BEVS and potential for the plasmid-based system was validated. This study demonstrates that plasmid-based transfection offers a viable option for production of noro-, rota- and entero-VLPs in insect cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.