Abstract
Fungal meroterpenoids are diverse structurally intriguing molecules with various biological properties. One large group within this compound class is derived from the aromatic precursor 3,5-dimethylorsellinic acid (DMOA). In this study, we constructed engineered metabolic pathways in the fungus Aspergillus oryzae to expand the molecular diversity of meroterpenoids. We employed the 5-methylorsellinic acid (5-MOA) synthase FncE and three additional biosynthetic enzymes for the formation of (6R,10'R)-epoxyfarnesyl-5-MOA methyl ester, which served as a non-native substrate for four terpene cyclases from DMOA-derived meroterpenoid pathways. As a result, we successfully generated six unnatural 5-MOA-derived meroterpenoid species, demonstrating the effectiveness of our approach in the generation of structural analogues of meroterpenoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.