Abstract

All IgG-type antibodies are N-glycosylated in their Fc part at Asn-297. Typically, a fucose residue is attached to the first N-acetylglucosamine of these complex-type N-glycans. Antibodies lacking core fucosylation show a significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and an increased efficacy of anti-tumor activity. In cases where the clinical efficacy of an antibody is to some extent mediated by its ADCC effector function, afucosylated N-glycans could help to reduce dose requirement and save manufacturing costs. Using Chinese hamster ovary (CHO) cells as a model, we demonstrate here that heterologous expression of the prokaryotic enzyme GDP-6-deoxy-d-lyxo-4-hexulose reductase within the cytosol can efficiently deflect the fucose de novo pathway. Antibody-producing CHO cells that were modified in this way secrete antibodies lacking core fucose as demonstrated by MALDI-TOF mass spectrometry and HPAEC-PAD monosaccharide analysis. Engineering of the fucose de novo pathway has led to the construction of IgGs with a strongly enhanced ADCC effector function. The method described here should have broad practical applicability for the development of next-generation therapeutic antibodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.