Abstract

We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from bismuth (Bi) from the respective reaction thresholds up to 2.6 GeV. Here we present 275 cross sections for 23 nuclear reactions. The production of noble gas isotopes from Bi is of special importance for design studies of accelerator driven systems (EA/ADS) and nuclear spallation sources. For experiments with proton energies above 200 MeV the mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. Comparing the cross sections for Bi to the data published recently for Pb indicates that for 4He the cross sections for Bi below 200 MeV are up to a factor of 2–3 higher than the Pb data, which can be explained by the production of α-decaying Po-isotopes from Bi but not from Pb. Some of the cross sections for the production of 21Ne from Bi are affected by recoil effects from neighboured Al-foils, which compromises a study of a possible lowering of the effective Coulomb-barrier. The differences in the excitation functions between Pb and Bi for Kr- and Xe-isotopes can be explained by energy-dependent higher fission cross sections for Bi compared to Pb. The experimental data are compared to results from the theoretical nuclear model codes INCL4/ABLA and TALYS. The INCL4/ABLA system describes the cross sections for the production of 4He-, Kr- and Xe-isotopes reasonably well, i.e. mostly within a factor of a few. In contrast, the model completely fails describing 21Ne, 22Ne, 36Ar and 38Ar, which are produced via spallation and/or multifragmentation. The TALYS code is only able to accurately predict reaction thresholds. The absolute values are either significantly over- or underestimated. Consequently, the comparison of measured and modelled thin target cross sections clearly indicates that experimental data are still needed because the predictive power of nuclear model codes, though permanently improving, does still not allow to reliably predict the cross sections needed for most applications and irradiation experiments remain indispensable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call