Abstract

N-acetyl-D-neuraminic acid (Neu5Ac) is a costly precursor for many drugs such as anti-influenza antivirals. In a previous study, a whole-cell process for Neu5Ac production was developed using a combination of two Escherichia coli cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine-2-epimerase (bage) and E. coli N-acetyl-D-neuraminic acid aldolase (nanA), respectively. In this study, we constructed a bAGE and NanA co-expression system to improve Neu5Ac production. Two recombinant E. coli strains, E. coli BL21 (DE3) pET-bage-nanA (HA) and E. coli BL21 (DE3) pET-bage-2nanA (HAA), synchronously expressing bAGE and NanA were used as biocatalysts to generate Neu5Ac from N-acetyl-D-glucosamine (GlcNAc) and pyruvate. The HA biocatalysts produced 187.5mM Neu5Ac within 8h. The yield of GlcNAc was 15.6%, and the Neu5Ac production rate was 7.25g/L/h. The most active HAA biocatalysts generated 412.6mM Neu5Ac and a GlcNAc yield of 34.4%. HAA achieved a Neu5Ac production rate of 15.9g/L/h, which surpassed those for all reported Neu5Ac production processes so far. The present study demonstrates that using recombinant E. coli cells synchronously expressing bAGE and NanA as biocatalysts could potentially be used in the industrial mass production of Neu5Ac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.