Abstract

As the global population rises, resource depletion and environmental pollution also aggravate. To meet the needs of the population, different products have been manufactured. However, most industrially manufactured products are not eco-friendly, costly, and locally unavailable. To solve these problems, using and enhancing locally available biomaterials are the key option. Three substrates sawdust, bagasse, and coffee husk and the fungus Pleurotus ostreatus were used. Mycelium was fully colonized by 9, 14, and 27 days on potato dextrose agar (PDA), sorghum grain, and substrate, respectively. The mycelium growth on coffee husk showed the fastest growth rate whereas that of the sawdust was slowest. The fully colonized substrates were molded for 7, 14, and 21 days by plastic mold to maintain their regular 3D structure. The result shows that the block made with sawdust at 21 molding period has higher compressive strength and density of 750 kPa and 343.44 Kg/m3, respectively, followed by bagasse and coffee husk. These variations were due to the mycelium density difference between the substrates. Physicochemical and mechanical characteristics such as mycelium morphology, bimolecular and elemental analysis of substrates, density, water absorption, and compressive strength of the block were analyzed. This technology has the potential to replace conventional construction and packaging materials used for indoor applications such as insulation, partition walls, and other design and architectural applications. It also benefits in terms of its low cost, green synthesis approach, nontoxicity, low environmental emission, recyclability, and local availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.