Abstract

Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals which has been caused by a rod shaped, acid fast bacterium, called Mycobacterium bovis. The rapid and sensitive detection is a great challenge for TB diagnosis. The virulent strains of Mycobacterium tuberculosis complex (MTBC) have 16 different regions of difference (RD) in their genome which encode some important antigens. The major protein of M. bovis 64 (MPT-64) is one of the main immune-stimulating antigens which are encode by RD-2 region. The aim of the present study was cloning, expression and purification of MPT-64 as a protein antigen of M. bovis in a prokaryotic system for the usage in the future diagnostic studies. In this experimental study, the mpt-64 gene with 687 bp has been proliferated from M. bovis whole genome by polymerase chain reaction (PCR) method. The PCR product has been digested by BamHI and HindIII restriction enzymes and cloned into pQE-30 plasmid. The recombinant protein has been expressed in the Escherichia coli M15 with induction by isopropyl-β-D-thiogalactopyranoside (IPTG). The expressed protein was analyzed on SDS-PAGE, and purified with Nitrilotriacetic acid (Ni-NTA) column. Finally, its biological properties were confirmed in Western blotting method using specific antibodies. Data showed the successful cloning of mpt-64 gene (as a 687 bp segment) in expression vector. The MPT-64 recombinant protein was ideally expressed and purified as a 24 kDa protein. The result of this study indicated that MPT-64 recombinant protein (24 kDa) has been successfully expressed and purified in a prokaryotic system, so this protein could be used for differential diagnosis of pathogenic and non-pathogenic Mycobacterium, in suspected BTB cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call