Abstract

In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.

Highlights

  • Palm oil production is expanding to fulfill the growing worldwide needs for multiple uses of this commodity

  • It was found that the products generated from lignin nitrobenzene oxidation included hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, vanillin, syringic acid, syringaldehyde, p-coumaric acid, and ferulic acid

  • The yields of hydroxybenzoic acid (333.17 ± 49.44 ppm with the recovery of 16.66 ± 2.47 mg g−1 lignin), p-coumaric acid (15.21 ± 2.19 ppm with the recovery of 0.76 ± 0.11 mg g−1 lignin), and ferulic acid (44.75 ± 3.40 ppm with the recovery of 2.24 ± 0.17 mg g−1 lignin) were achieved maximum after 30 minutes of reaction, while the maximum yield of p-hydroxybenzaldehyde (5.67 ± 0.25 ppm with the recovery of 0.28 ± 0.01 mg g−1 lignin), vanillic acid (25.57 ± 1.64 ppm with the recovery of 1.28 ± 0.08 mg g−1 lignin), and syringaldehyde (815.26 ± 41.77 ppm with the recovery of 40.76 ± 2.09 mg g−1 lignin) was achieved at 120 minutes reaction

Read more

Summary

Introduction

Palm oil production is expanding to fulfill the growing worldwide needs for multiple uses of this commodity. The rapid growth of oil palm industry may have a negative impact on the environmental and social aspects. The concept of biorefinery is an excellent alternative to ensure the sustainability of this commodity. In Malaysia, approximately 20 million tons of crude palm oil had been produced in 2014. With each ton of palm oil production, approximately a ton of empty fruit bunch fiber (OPEFBF) was generated. In order to achieve environmentally friendly production while maximizing profitability, OPEFBF must be utilized to generate maximum capacity of biorefinery, where each constituent of biomass (cellulose, hemicellulose, and lignin) must be recovered and converted into either food or nonfood fractions [2,3,4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call