Abstract

Silica gel microspheres are ideal materials for bioencapsulation due to their mechanical properties, biocompatibility, and stability. Encapsulated cells are isolated from the environment and protected from predators, changes in pH, and osmotic stress. However methods for the production of silica gel microspheres suitable for bioencapsulation are not well established. This paper describes a method for the production of monodisperse silicon alkoxide cross-linked silica nanoparticle (SNP) gel microspheres for bioencapsulation in which silica gel precursor is extruded from a needle into a cross-flowing stream of mineral oil. Microspheres produced ranged from 1.3 to 2.9 mm in diameter with coefficients of variation ranging from 2 to 6%. Microsphere size was mainly controlled by the flowrate of the cross-flowing oil and smaller microspheres generally had larger coefficients of variation. The method described in this paper can be optimised to produce silica gel microspheres with a diverse range of compositions and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.