Abstract

Due to its high productivity and sucrose content, sugarcane (Saccharum officinarum) is becoming the source of high-value bioproducts. Expression of bacterial extracellular polysaccharide genes in non-biopolymer accumulating plants is an excellent resource for production of added-value products. To this end, an expression cassette containing a full-length glucosyltransferase (gtfI) gene from Streptococcus downei driven by a CaMV promoter was expressed in a commercial sugarcane cultivar (CP48-103) using a biolistic approach. Copy number was assessed for a number of selected transgenic sugarcane lines by DNA blot analysis, where it was corroborated that each transgenic line contained at least two gtfI copies. The southern blot analysis of gtfI-expressing lines showed that the number of integrated copies ranged from two to four. The expression of gtfI in transgenic sugarcane plants was confirmed by mRNA blot analysis and qRT-PCR analysis. The expression of gtfI in transgenic sugarcane plants resulted in an approximate 30% reduction in sucrose accumulation, suggesting that mutansucrase actively converted sucrose to mutan polymer. In internodal stalk tissues, mutan polymer accumulated up to 55.9 mg/g FW, which apparent through glucan staining. The levels of glucose and fructose increased nearly by twofold, suggesting that mutansucrase may also have hydrolyzing activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call