Abstract

The cultivation of microalgae has become a viable option to mitigate increase in CO2 in the atmosphere generated by industrial activities since they can capture CO2 as a carbon source for growth. Besides, they produce significant amounts of oils, carbohydrates, proteins, and other compounds of economic interest. There are several investigations related to the process, however, there is still no optimal scenario, since may depend on the final use of the biomass. The objective of this work was to develop a techno-economic evaluation of various technologies in harvesting and drying stages. The techno-economic estimation of these technologies provides a variety of production scenarios. Photobioreactors were used considering 1 ha as a cultivation area and a biomass production of 22.66 g/m2/day and a CO2 capture of 148.4 tons/ha/year was estimated. The production scenarios considered in this study have high energy demand and high operating costs (12.09–12.51 kWh/kg and US $210.05–214.59/kg). These results are mainly a consequence of the use of tubular photobioreactors as a biomass culture system. However, the use of photobioreactors in the production of microalgal biomass allows it to be obtained in optimal conditions for its use in the food or pharmaceutical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.