Abstract

Layered Double Hydroxides (LDH) are synthetic materials nanostructured in two dimensions that present positively charged layers with interspersed anions for charge and structure balancing. Being recognized as a promising material for various applications, a complete exploration of its possible attractive properties and its synthesis process is essential. However, drying, a necessary step in the process, is still little studied. This work aimed to produce MgAl–CO3/LDH microspheres and calculate the volumetric heat coefficient in spray drying, evaluating the drying air inlet temperature and the concentration of the feed paste in the dryer. LDH synthesis was carried out using the coprecipitation method, maintaining a 2:1 Mg/Al ratio. The infrared spectra presented the bands characteristic of the hydrotalcite-type material. Through XRD, it was possible to observe that the variation in drying air temperature and feed paste concentration produced LDHs with structural differences. The results obtained for the basal spacing ranged from 7.685 to 7.705 Å. Scanning electron microscopy images confirm the production of LDH microspheres, showing variation in the size of the agglomerates with changes in the feed paste concentration. The volumetric heat transfer coefficient values ranged from 4.31 to 5.36 W m−3 K−1, with only the air inlet temperature significantly influencing the process under the conditions studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.