Abstract

Certain mutants of the yeast Saccharomyces cerevisiae show copper or cadmium resistance. Both copper- and cadmium-resistant strains produce the same metallothionein with 53 amino acid residues which causes metal detoxification by chelating copper or cadmium. The metal detoxification role is the only known function of the metallothionein in yeast. The MT is encoded by the CUP1 gene on chromosome VIII which is expressed by induction with metals. The CUP1 is amplified to 3-14 copies with 2 kb-tandem-repeat units in the metal-resistant strains, whereas the wild-type strain contains only a single copy of the CUP1. Although transcription of CUP1 is inducible by metals, the ACE1 protein serves a dual function as a sensor for copper and an inducer for CUP1 transcription in the copper-resistant strain. In the cadmium-resistant strain, the heat-shock factor having a point mutation may be the regulator for CUP1 transcription. Therefore, it has been clarified that production of MT in yeast is controlled by two systems, the amplification of CUP1 and its transcriptional regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.