Abstract

Interest in land-based farms using recirculating aquaculture systems (RAS) for market-size Atlantic salmon (Salmo salar) continues to grow, and several commercial facilities are already rearing fish. Performance data for commercially available mixed-sex, all-female, and triploid all-female Atlantic salmon reared to market-size in freshwater land-based facilities, however, are limited, particularly for European strain fish. Accordingly, eight groups of European-sourced Atlantic salmon (five groups of diploid mixed-sex, two groups of diploid all-female, and one group of triploid all-female fish) were reared from eyed egg to market-size in a semi-commercial scale land-based aquaculture systems over five separate production cycles to quantify performance metrics. Fish reached market-size (4−5 kg) in 24.7–26.3 months post-hatch. Fish were reared at a mean water temperature of 12.3–13.7 °C from first feeding to a mean size of 466–1265 g, then 13.3–15.1 °C during growout. On average, all-female groups grew faster than mixed-sex groups; however, environmental conditions and performance of individual cohorts varied. In a comingled production cycle, diploid all-female salmon grew faster than triploid counterparts. Early maturation rates ranged from 0 % to 67 %, with a mean maturation rate of 34 % for diploid mixed-sex fish and 67 % and 13 % for two diploid all-female groups, respectively. Triploid all-female Atlantic salmon did not mature. This research confirms biological and technological feasibility of growing Atlantic salmon to market-size in land-based systems but controlling early maturation of diploid salmon remained a challenge under the conditions utilized in these trials. This research provides important data inputs to optimize operational and financial projections for existing and potential land-based Atlantic salmon farms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call