Abstract

The continuous casting method (CCM) has been designed to obtain low cost silicon wafers. This method has the objective of wafer cost reduction production effect through the installation of a pre-heating zone and a crystal growth and cooling zone separately on both sides of a silicon melting and injecting zone. We have developed the drip-controlled method (DCM) as a casting method for CCM. In DCM, the injection of molten silicon and the crystal growth are carried out simultaneously and the heat of molten silicon is utilized actively as a heat source to control the crystal growth. DCM is the most effective casting method for continuous casting. Batch-type ingots with a size of 320 mm square, height 260-300 mm, were produced by DCM. An oxygen content of 5-15 ppma and a carbon content of less than 5 ppma were obtained throughout the ingots. The cell efficiency yield of more than 13.5% was 80% against the growth direction, with a wafer size of 100 mm/spl times/100 mm using our standard cell process. A maximum value was found of 14.3% measured in JQA. The solar cell efficiency, the carrier lifetime and the diffusion length measured in this study showed DCM had an advantage for obtaining one-directional growth and columnar structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.