Abstract
Carbonation curing is currently one of the most effective methods for reducing carbon and absorbing carbon dioxide in cement-based materials. This study evaluated the macroscopic, microscopic, and thermal properties of red sandstone and limestone with different dosages under different curing methods. The results show that the carbonation rate is higher when 20 % red sandstone is added, and the carbon fixation amount is the highest. The inclusion of red sandstone provides more nucleation sites for the formation of carbonation product silica gel. At 600°C, the strength reduction of the carbonation samples is lower than that of the sealed samples, and the carbonation products are more resistant to high temperatures. Furthermore, the relationship between the microscopic, macroscopic, and thermal properties of red sandstone and limestone under different curing methods is explored. This study provides a new approach to the utilization of red sandstone resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.