Abstract
Corynebacterium glutamicum, the best established industrial producer organism for lysine was genetically modified to allow the production of lysine on grass and corn silages. The resulting strain C. glutamicum lysCfbrdldPsodpycPsodmalEPsodfbpPsodgapXPsod was based on earlier work (Neuner and Heinzle, 2011). That mutant carries a point mutation in the aspartokinase (lysC) regulatory subunit gene as well as overexpression of d-lactate dehydrogenase (dld), pyruvate carboxylase (pyc) and malic enzyme (malE) using the strong Psod promoter. Here, we additionally overexpressed fructose 1,6-bisphosphatase (fbp) and glyceraldehyde 3-phosphate dehydrogenase (gapX) using the same promoter. The resulting strain grew readily on grass and corn silages with a specific growth rate of 0.35h−1 and lysine carbon yields of approximately 90C-mmol (C-mol)−1. Lysine yields were hardly affected by oxygen limitation whereas linear growth was observed under oxygen limiting conditions. Overall, this strain seems very robust with respect to the composition of silage utilizing all quantified low molecular weight substrates, e.g. lactate, glucose, fructose, maltose, quinate, fumarate, glutamate, leucine, isoleucine and alanine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.