Abstract

BackgroundPolylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway.ResultsEach LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5.ConclusionsWe developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional ethanol pathway, at neutral and low pH, generated a comprehensive picture of lactic acid production in this yeast. The findings are applicable in generation other lactic acid producing yeast, thus providing a significant contribution to the field of biotechnical production of lactic acid.

Highlights

  • Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources

  • The growth of the PDC1 and PDC5 deleted strain was severely reduced on glucose medium [2], which may be undesirable in a production process

  • Development of tools for C. sonorensis transformation Growth inhibition tests in YPD medium supplemented with antibiotics in a range of concentrations suggested that ≥200 μg/ml of G418 was inhibitory and could probably be used for the selection of transformants

Read more

Summary

Introduction

Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. Even though the expression of the lactate dehydrogenase gene can itself decrease the conversion of glucose to ethanol to some extent [12], modification of the ethanol pathway, to remove competition with lactate dehydrogenase for pyruvate, has proved an effective way to increase the yield of lactic acid on glucose [2]. A double deletion of PDC1 and PDC5 in lactic acid producing S. cerevisiae strains decreased ethanol production and increased lactic acid yield significantly, but still some ethanol was produced because the PDC6 gene was intact [2]. The deletion of the only pyruvate decarboxylase encoding gene, PDC1, from K. lactis had only a mild effect on growth, was sufficient to eliminate ethanol production and improve lactate production [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call