Abstract

In this study, a novel modified nickel/H-beta (Ni/DeAl-beta) catalyst, which has active acidic sites and hydrogen binding sites, was prepared and used to produce liquefied fuel from lignin. The bifunctional Ni/DeAl-beta catalyst efficiently converted kraft lignin into liquefied fuel due to the synergistic effect of aluminum Lewis acid sites and nickel hydrogen binding sites. At a nickel content of 0.6 mmol/gzeolite, the Ni/DeAl-beta catalyst gave a high liquid product yield of 88.6% at 300 °C for 36 h. Most of the liquid product was dissolved in petroleum ether (73% of 88.6%), which was mainly composed of monomeric and dimeric degradation products. Under these conditions, the higher heating values (HHV) increased from 24.9 MJ/kg for kraft lignin to 32.0 MJ/kg for the liquid product. These results demonstrated the bifunctional Ni/DeAl-beta catalyst could be an efficient catalyst for lignin to liquefied fuel conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.