Abstract

Utilization of 500-nm-diameter polystyrene (PS) nanospheres as pore former in a screen printing process to tailor the porous structure of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode for improving the performance of protonic solid oxide fuel cells is reported. The effects of PS nanosphere amount on cathode microstructure and cell performance are investigated. It is found that PS nanospheres can undergo a self-organized distribution in the screen-printed LSCF cathode due to the large difference in density between PS and LSCF, resulting in a porosity gradient in the cathode structure. The fuel cell with a 15 wt% PS-tailored cathode exhibits a much higher power density compared to that without tailoring by PS. The enhanced cell performance can be ascribed to the graded porosity in the cathode structure, which significantly reduces the ohmic and polarization resistances. It seems that such a graded-porosity cathode structure not only facilitates the generation and migration of O−ad from catalytic sites to triple phase boundaries (TPBs) but also promotes transfer of protons from the electrolyte to the TPBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.