Abstract
Owing to applications in the food and nutraceutical industries, inulinases, fructosyltransferases and sucrases have gained considerable attention in recent times. Twenty-five fungal strains were screened for production of these enzymes on three different media formulated using inulin-rich plant extracts prepared from asparagus root, dahlia tuber and dandelion root extract. Culture filtrates of the fungi were examined for hydrolytic activities. Fungi belonging to genus Aspergillus, A. niger GNCC 2655 (11.3U/ml), A. awamori MTCC 2879 (8.2U/ml), A. niger ATCC 26011 (7.9U/ml) secreted high titers of inulinase followed by Penicillium sp. NFCCI 2768 (2.6U/ml) and Penicillium citrinum MTCC 1256 (1.1U/ml). High sucrase activity was noticed in A. niger GNCC 2613 (113U/ml) and A. awamori MTCC 2879 (107.8U/ml). Analysis of end products of inulinase action by HPLC revealed that most of the enzymes were exo-inulinases liberating fructose exclusively from inulin. Five fungi, P. citrinum MTCC 1256, Penicillium rugulosum MTCC 3487, Penicillium sp. NFCCI 2768, A. fumigatus GNCC 1351 and A. niger ATCC 26011 however, produced a mixture of endo- and exo-inulinases liberating oligosaccharides (GF3 and GF2) along with fructose. High inulinase/sucrase yielding strains were evaluated for extracellular and intracellular hydrolytic and transfructosylating activities and intracellular enzyme profiles were found to be considerably different in terms of titers and end products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.