Abstract
Osteoclastogenic cytokines produced by T and B lineage cells and interleukin (IL)-7-induced expansion of the pool size of osteoclast precursors have been suggested to play an important role in acceleration of osteoclastogenesis induced by estrogen deficiency. However, the contribution of increased RANKL produced by osteoblasts/stromal cells to increase osteoclastogenesis in a mouse model of estrogen-deficient osteoporosis and in vitro effects of IL-7 on osteoclast precursor generation remain controversial. Thus, we investigated the effect of ovariectomy (OVX) of mice on production of RANKL, osteoprotegerin (OPG), and IL-7 in bone and the effect of IL-7 on osteoclast precursor generation in vitro. OVX did not significantly stimulate mRNA expressions of RANKL and OPG in whole femurs. Because the epiphysis, but not the femoral shaft (diaphysis) or bone marrow, is the main site of osteoclastogenesis, it is important to specifically analyze mRNA expression by osteoblasts/stromal cells at these parts of the femur. Therefore, we isolated RNA from bone marrow cell-free epiphysis, diaphysis, and flushed-out bone marrow and examined mRNA expression. The results showed no significant changes of RANKL and OPG mRNA expression in any part of the femur. In addition, OVX did not significantly affect RANKL and OPG mRNA expression by the adherent stromal cells isolated from flushed-out bone marrow cells but did stimulate RANKL mRNA expression by B220(+) cells in the nonadherent cell fraction. On the other hand, OVX increased IL-7 mRNA expression in the femur as well as IL-7 concentrations in bone fluid. In cultures of unfractionated bone cells isolated by vigorous agitation of minced whole long bones to release the cells tightly attached to the bone surfaces, but not in cocultures of clonal osteoblasts/stromal cells and flushed-out bone marrow cells, IL-7 stimulated generations of osteoclasts as well as osteoclast precursors. These data suggest that increased RANKL production by osteoblasts/stromal cells is unlikely to play a central role in acceleration of osteoclastogenesis in estrogen deficiency of mice and that IL-7 stimulates osteoclast precursor generation, presumably through an action of IL-7 on the cells attached to bone rather than on cells contained in the bone marrow cell population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.