Abstract

Ethanol oxidation by a reconstituted system composed of cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats, NADPH-cytochrome c reductase, phospholipid and NADPH was inhibited by a series of hydroxyl radical scavenging agents. Inhibition was competitive with respect to ethanol and was specific in the sense that the metabolism of aminopyrine or benzphetamine by the reconstituted system was not affected by the scavengers. The generation of ethylene gas from 2-keto-4-thiomethylbutyric acid in an ethanol-sensitive manner provided chemical evidence consistent with the ability of the reconstituted system to generate hydroxyl radicals. These results suggest that the oxidation of ethanol by the reconstituted system reflects the interaction of ethanol with hydroxyl radicals generated during NADPH oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.