Abstract

Biomedical composites of hydroxyapatite (HA) and bioactive glass (BG) have been difficult to obtain as a dense body without the undesirable occurrence of thermal reactions and phase degradation. Herein, HA–BG dense composites were produced by the hot‐pressing technique. A range of HA–BG powder mixtures (30–50 wt% BG) was fully densified by hot pressing at temperatures as low as ∼700°–800°C. On the other hand, the HA–BG composites could not be densified by pressureless sintering because their composition was degraded due to a severe thermal reaction. The hot‐pressed composites had significantly improved flexural strengths (∼60 MPa) as compared with those subjected to pressureless sintering (∼30 MPa) or the pure HA control (∼40 MPa). The hot‐pressed HA–BG composites showed significantly enhanced bioactivity in a simulated body fluid, as well as osteoblast cell activity with respect to the pure HA, confirming their excellent in vitro biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.