Abstract

Abstract The present study investigates hydrogen production in a hydrogen-permselective membrane reactor from purge gases of an ammonia plant. Hydrogen which initially exists in the purge gases and hydrogen that is produced from decomposition of ammonia on nickel–Alumina catalyst bed simultaneously permeate from reaction side to shell side through a thin layer of palladium–silver membrane. A sweep gas can be used in the shell side for increasing driving force. The amount of hydrogen that can be gained annually and effect of pressure, temperature, thickness of Pd–Ag layer, configuration of flow in the membrane reactor and sweep gas flow ratio have been studied. This study shows that the countercurrent mode is better than co-current mode of operation. The rate of hydrogen permeation increases with increasing of temperature, pressure and sweep gas flow rate. This approach produces and separates large amounts of hydrogen and decreases environmental impacts owing to ammonia emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.